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Manure Storage
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Manure Systems
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Sustainability and Manure Cycling

Fertilizers
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Storage Impacts

• Nitrogen losses
• Stratification
 Settling of solids 

and nutrients
 Increased solids 

and phosphorus in 
settled material
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Selection of storage facility

Nitrogen Retention in Different Manure-Handling Systems

Adapted from: Livestock Waste Facilities Handbook, MWPS
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Ammonia Emissions Losses

(with crust cover)
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Nutrients & Anaerobic Digestion

Wright, et al.  2004.  Preliminary Comparison of Five Anaerobic Digestion 
Systems on Dairy Farms in New York State
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Nutrients & Anaerobic Digestion
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Increase of 24%
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Ammonia Emissions
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Aguirre-Villegas, H. A., Larson, 
R. and Reinemann, D. J. (2014), 
From waste-to-worth: energy, 
emissions, and nutrient 
implications of manure 
processing pathways. Biofuels, 
Bioprod. Bioref., 8: 770–793. 
doi:10.1002/bbb.1496
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Separation Systems
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N-P-K

Concentration N (g/kg) P2O5 (g/kg) K2O (g/kg)

Manure 50 18 41

Liquid 101 27 75

Solid 15 14 8

Ratio N P2O5 K2O 

Manure 3 1 2
Liquid 4 1 3

Solid 2 2 1
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Mass Separator Efficiency
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Phosphorus by Separator Type
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Total Nitrogen by Separator Type
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Screens
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Ammonia Emissions with Separation

Aguirre-Villegas, H.A., R.A. Larson, and D. Reinemann.  2014.  From Waste-To-Worth: Energy, Emissions, and 
Nutrient Implications of Manure Processing Pathways.  Biofuels, Bioproducts & Biorefining, 8:770-793. 
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Separation and Emissions Reductions

Aguirre-Villegas, H.A., R.A. Larson, and D. Reinemann.  2014.  From Waste-To-Worth: Energy, Emissions, and 
Nutrient Implications of Manure Processing Pathways.  Biofuels, Bioproducts & Biorefining, 8:770-793. 
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Field Validation of Ammonia Emissions

6 months storage 4.5 months field
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Treatments

Raw
Manure

Raw
Manure

Raw
Manure
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Ammonia Emissions

M.A. Holly, R.A. Larson, J.M. Powell, M.D. Ruark, H. Aguirre-Villegas, Greenhouse gas and ammonia emissions from digested and 
separated dairy manure during storage and after land application, Agriculture, Ecosystems & Environment, Volume 239, 15 February
2017, Pages 410-419, ISSN 0167-8809, http://doi.org/10.1016/j.agee.2017.02.007
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Manure Storage Covers

Impermeable covers 
Reduce all forms of emissions and odors
Can be expensive and difficult to manage
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Manure Storage Covers

• Permeable covers (natural crust, biomass 
covers)
 Straw covers 15 cm and 30 cm straw covers reduce NH3 

emissions by 28% and 90% (VanderZaag et al. 2009)
 Chopped straw increases emissions of CH4 (Berg et al., 2006; 

Guarino et al., 2006)
 Straw covers increase emissions of carbon dioxide (CO2) and 

nitrous oxide (N2O) due to aerobic conditions at the surface and 
the increased organic material (VanderZaag et al., 2009)

 Limited life span (straw 3 months – Guarino et al. 2006)
 Other natural permeable covers: chopped corn stalks, saw dust, 

rice hulls, ground corn cobs, and grass clippings also reduce 
NH3 emissions (Vanderzaag et al., 2008) similar issues to straw 
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Intensity of Thermal Treatment

Thermally Treated Biomass Storage Covers
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Cover Treatments

Biomass
Treatment

Manure Incorporation Suspended as a 
Cover

Raw Wood Incorporated Raw Wood Raw Wood Cover

Wood Biochar Incorporated Wood Biochar Wood Biochar Cover

Steam Treated 
Wood

Incorporated Steamed 
Wood

Steamed Wood Cover

Corn Cob Biochar Incorporated Cob Biochar Cob Biochar Cover
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Biomass Covers

Raw wood 70% white 
birch 30% maple (left), 
steamed wood, wood 
biochar, and corncob 
biochar (right)
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Covered Storage Ammonia Emissions 
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Biomass Nitrogen Uptake
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Ammonia Emissions & Sorption

Total NH3 
Emissions 

(mg)
NH3 mitigated 

(mg)

Sorption 
of NH3 
(mg)

Control 5462

Raw Wood 3047 2414 16

Steamed Wood 2561 2900 18

Wood Biochar 221 5241 71

Cob Biochar 2257 3205 18
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Manure Agitation
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Caused by:
• Animal type
• Diet
• Bedding material

• Additional by-products
• Storage
• Processing 

Manure variation
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Manure Inconsistencies

• Can cause inconsistencies in application (over and under 
application in manure) 
 environmental consequences 
 crop yield losses

• Consistency in manure can reduce application 
inconsistencies

• Agitation and sampling frequency are key aspects to 
reducing these inconsistencies

• Further steps down the line are not effective if the values 
for application are incorrect
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Agitation/mixing practices

• Key to obtaining uniformity in manure applications
• Can limit variability significantly
 Dou et al. 2001
 6-8% variability without agitation
 20-30% variability with no agitation
 5 samples required with agitation
 40+ samples required without agitation

• How much agitation is enough agitation?
• Can be used in liquid and solid systems
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Data Variation 

Parameter Min Max Avg

Ammonia 4% 10% 6%

TS 7% 21% 16%

TKN 8% 15% 9%

TP 5% 12% 8%
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Thank you!

rebecca.larson@wisc.edu

Much of this material is based upon 
work that is supported by the National 
Institute of Food and Agriculture, U.S. 
Department of Agriculture, under 
award number 2013-68002-20525. Any 
opinions, findings, conclusions, or 
recommendations expressed in this 
publication are those of the author(s) 
and do not necessarily reflect the view 
of the U.S. Department of Agriculture.
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